Spinors on singular spaces and the topology of causal fermion systems
نویسندگان
چکیده
We propose causal fermion systems and Riemannian fermion systems as a framework for describing spinors on singular spaces. The underlying topological structures are introduced and analyzed. The connection to the spin condition in differential topology is worked out. The constructions are illustrated by many simple examples like the Euclidean plane, the two-dimensional Minkowski space, a conical singularity, a lattice system as well as the curvature singularity of the Schwarzschild space-time.
منابع مشابه
$L$-enriched topological systems---a common framework of $L$-topology and $L$-frames
Employing the notions of the strong $L$-topology introduced by Zhangand the $L$-frame introduced by Yao and the concept of $L$-enrichedtopological system defined in the present paper, we constructadjunctions among the categories {bf St$L$-Top} of strong$L$-topological spaces, {bf S$L$-Loc} of strict $L$-locales and{bf $L$-EnTopSys} of $L$-enriched topological systems. All of theseconcepts are ...
متن کاملOn Fermions in Compact Momentum Spaces Bilinearly Constructed with Pure Spinors
It is shown how the old Cartan’s conjecture on the fundamental role of the geometry of simple (or pure) spinors, as bilinearly underlying euclidean geometry, may be extended also to quantum mechanics of fermions (in first quantization), however in compact momentum spaces, bilinearly constructed with spinors, with signatures unambiguously resulting from the construction, and locally conceived as...
متن کاملWeak hyper semi-quantales and weak hypervalued topological spaces
The purpose of this paper is to construct a weak hyper semi-quantale as a generalization of the concept of semi-quantale and used it as an appropriate hyperlattice-theoretic basis to formulate new lattice-valued topological theories. Based on such weak hyper semi-quantale, we aim to construct the notion of a weak hypervalued-topology as a generalized form of the so-called lattice-valued t...
متن کاملQuantale-valued fuzzy Scott topology
The aim of this paper is to extend the truth value table oflattice-valued convergence spaces to a more general case andthen to use it to introduce and study the quantale-valued fuzzy Scotttopology in fuzzy domain theory. Let $(L,*,varepsilon)$ be acommutative unital quantale and let $otimes$ be a binary operationon $L$ which is distributive over nonempty subsets. The quadruple$(L,*,otimes,varep...
متن کاملFuzzy Topology Generated by Fuzzy Norm
In the current paper, consider the fuzzy normed linear space $(X,N)$ which is defined by Bag and Samanta. First, we construct a new fuzzy topology on this space and show that these spaces are Hausdorff locally convex fuzzy topological vector space. Some necessary and sufficient conditions are established to illustrate that the presented fuzzy topology is equivalent to two previously studied fuz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014